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I. INTRODUCTION AND PERSPECTIVE

The published literature on 'robust stabilization and performance' can be

viewed from two viewpoints based on the characterization of uncertainty, namely

(i) structured uncertainty and (ii) unstructured uncertainty. Much of the

literature addresses only one of these two types of uncertainties while there

exist few results dealing with the combined uncertainty case. The 'structured

uncertainty' is treated both in the time domain, state space framework (where it

manifests itself in the form of perturbations in the entries of the matrices

describing the system behavior) and in the frequency domain, transfer function

framework (where it manifests itself in the form of perturbations in the coeffi-

cients of the numerator and denominator polynomials of the transfer function).

However, the 'unstructured uncertainty' (resulting mostly from the high frequency

unmodeled dynamics) is treated exclusively in the frequency domain framework.

The robust stabilization problem in the presence of structured uncertainty

has been given much attention in recent years. References [l]-[23] provide a

representative list of the type of work being carried out in this area. On the

other hand, the robust stabilization problem under unstructured uncertainty has

been receiving attention much longer and has produced many interesting results,

notably the H. theory and the LQG/LTR theory, among others [24]-[33]. Of these,

the majority of the results are concerned with stability robustness analysis

whereas techniques dealing with the robust synthesis problem are relatively few

[31]-[32). The combined uncertainty problem, being more difficult, produced the

least literature [34]-[39].

There are three paths being taken to address the combined uncertainty

problem. One strategy is to convert the structured uncertainty into some form
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of unstructured uncertainty formulation and then use the methods available for

the unstructured uncertainty problem. The structured singular value method [17]

falls into this category. However, these methods are overly conservative because

they do not take advantage of the structure of the uncertainty. The other path

has been to consider a 'weakly unstructured perturbation' (in which we assume

both phase and magnitude information of the uncertainty are available, whereas

in 'highly unstructured uncertainty' we asstame that only magnitude information

is available) and then convert this into a structured uncertainty formulation and

then use the methods available for structured uncertainty. Of course, this

strategy obviously is not suitable for the combination of highly unstructured

uncertainty and structured uncertainty. Finally, the third path is to derive a

new problem formulation in which the method explicitly accommodates both struc-

tured uncertainty and unstructured uncertainty. Reference [37] was one of the

first papers to consider the design problem for the combined case. In this

paper, this problem is cast completely in the frequency domain, transfer function

setting. Recently, an interesting new framework was proposed to solve the syn-

thesis problem for the combined uncertainty case [38]-[39].

In this research, some results which consider only one type of uncertainty

as well as some results which treat the combined case are presented. The report

is organized as follows: Section II considers the robust stabilization aspect.

In Subsection 2.1, a robust stabilizing controller design for MIMO (Multiple

Input Multiple Output) systems for a class of nonminimum phase systems is pre-

sented. Subsection 2.2 presents some interesting results on the simultaneous

stabilization of two plants each having a separate unstructured uncertainty

profile. In other words, this problem is one form of the combined uncertainty

problem wherein structured uncertainty is taken to be simultaneous stabilization
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(i.e. the uncertain parameter takes on discrete values instead of continuum of

values). Subsection 2.3 presents nonconservative stability robustness bounds for

linear systems with real parameter variations. In Section III, the aspect of

performance robustness is addressed. Finally, Section IV offers some concluding

remarks and recommendations for future research.
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II. ROBUST STABILIZATION IN THE PRESENCE OF STRUCTURED

AND/OR UNSTRUCTURED UNCERTAINTY

Here, we address the issue of robust stabilization for linear systems.

First, in Subsection 2.1, the aspect of robust stabilization under structured

uncertainty (real parameter variations) is considered. In previous research

[15], the control design problem was solved under some restrictive assumptions

(such as minimum phase, etc). In this research, we relax the minimum phase

assumption, consider a class of nonminimum phase systems, and present a control

design method suitable for MIMO systems. Then in Subsection 2.2 the problem of

combined uncertainty is addressed. Since it is difficult to solve the control

design problem for very general nonminimum phase systems under the combined

uncertainty case, a different problem formulation in which the structured uncer-

tainty is cast as the simultaneous stabilization problem (for two plants) is

presented. In this framework, there are no severe assumptions made on the

nominal plants. Finally, in Subsection 2.3, the problem of analyzing the sta-

bility robustness of a given controller is addressed. This problem is cast as

one of obtaining stability robustness measures for a given stable system. Using

known results on the characteristic polynomials of a Bialternate sum matrix,

nonconservative perturbation bounds are obtained to maintain stability.

2.1 Robust Stabilization Under Structured Uncertainty
A

for a Class of Nonminimum Phase Systems:

Robust stabilization of linear uncertain systems with real parametric

uncertainty has been an active topic of research in recent years. In fact, the

research documented in the two final reports of the contracts F33615-86-K-3611

and F33615-84-K-3606 carried out by this principal investigator [40]-[41] serve

4



as useful reference for this research (along with references therein). In the

very few methods available for control design with g"arante stability robust-

ness, a common assumption is the minimum phase assumption. Attempts to relax

this minimum -hase assumption and still guarantee robust stability turned out to

be quite nontrivial, and only partial inroads have been made in this area.

Towards this direction, in (42], a class of nonminimum phase Single Input Single

Output (SISO) systems were considered. In this subsection, we present a design

method useful for MIMO systems, for a class of nonminimum phase systems, namely

those with unstable poles only at the origin.

This problem is solved in an indirect way as described below. We first

discuss the robust stabilization of a 'type L' feedback system. We then show

that the control design strategy for this problem is directly applicable to the

robust stabilization of parameter uncertain systems with unstable poles being

only at the origin (with possible right half plane zeros).

2.1.1. Robust Stability of Tyve L Feedback Systems:

In many engineering applications, control system designs utilizing some

type of integral feedback are common. For example, it is well known that a

single-input/single-output 'type 2' system (wiPh double integrators in the loop

transfer function) can track a ramp signal with zero steady-state error.

Similarly, 'type L' system design has found use in engineering practice. In

[43], the concept of type L system is generalized to multivariable systems.

However, it was not until recently that the robust stability of integral feedback

control ('type 1' system) has received attention [44].

In this subsection, we consider the robust stability of type L feedback

systems. We shall extend the results reported in [44] to general type L systems.
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Unless stated otherwise, we shall assume throughout the subsection that the plant

is an open loop stable, linear, time-invariant system. For simplicity in

notation but without loss of generality, we shall restrict the plant transfer

function to be a square matrix relating p inputs to p outputs. Our objective is

to propose a simple design technique for type L feedback systems which possess

certain stability robustness in the closed-loop. Then this result is directly

applied to the problem of robust stabilization of parametric uncertain systems

with right half plane zeros, a problem discussed in [42).

2.1.2 Preliminaries:

This subsection is concerned with synthesis of type L feedback systems as

shown in Figure 1. The plant is assumed to be linear, time invariant and finite

dimensional and is described by the following state-space model:

x(t) - Ax(t) + Bu(t), y(t) - Cx(t) (2.1)

where x(t) E R , u(t) E Vm, y(t) e RP with m - p, and the eigenvalues of the

matrix A are all in the open left half plane. The transfer function matrix P(s)

is represented by

P(s) - C(sI - A)'B. (2.2)

The compensator K(s) is assumed to be of the form

K(s) - KL(s) - KI- ;-s (2.3)

where Ki's E Rp o , with m - p and L >_ 1. The prohle-a in consideration is to

synthesize the Ki's such that the closed-loop system admits certain stability
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robustness. It wilL be shown that the aforementioned synthesis task is closely

related to singular perturbation theory. The next result will be repeatedly

used throughout this section.

Theorem 2.1 [45, p. 52]. Consider the singularly perturbed (autonomous)

system

[.,It = F I[ (2.4)

where F E R'm , J e RPP and eO is a scalar. Suppose that matrices J and F-GJ-'H

are both stable (having all eigenvalues in the open left half plane). Let

e. = I (2.5)

Then for all ee (0, e*), the system (2.4) is asymptotically stable.

Remark I: The estimate of c" in (2.5) is conservative. The etact value

of e* can be computed from a more complex procedure as discussed in [46].

Using Theorem 2.1, we can easily obtain the following result which was

discussed extensively in [44].

Theorem 2.2: Let the feedback compensator K(s) be of the form (2.3) with

L - 1. Then, there exists K0 - coE o such that the closed-loop system is stable

whenever e E (0, c) for some e; > 0, E0 E RPZP and if and only if the matrix

P(0) - -CA-1B is nonsingular.

Proof: Suppose the matrix CA-1B is nonsingular, then E0 r RI can be

found such that -EoCA'1B has all eigenvalues in the open left half plane. If the

feedback compensator as in (2.3) is used with L - i, then we have
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u(t) - e f E'yltldc - e, f t E0oC(' )Q (2.6)

as the feedback control law. Differentiating both sides of (2.6) yields

- (t)- E CK(t) . (2.7)
Iso

We may write the above equation as a unified matrix equation with (2.1) as below:

[to B A~lu (2.8)

Define et-r, then e-!k and dutdU . Hence, (2.8) can be rewritten as
Di dt

du

E )J.[U(T) (2.9)

It should be clear that the stability of the closed-loop system is equivalent to

the stability of the singularly perturbed system (2.8). We can now apply Theorem

2.2 to (2.9) to conclude the existence of to > 0 such that the closed-loop system

is stable for all e E (0, 4). Conversely, if the closed-loop system is stable

for all c e (0, e8) for some e > 0 and EO e RPXP, then by singular perturbation

theory, we must have the stability of matrices A and -EoCA-1B, i.e. the eigen-

values of A and -EoCA'B are all in the open left half plane. Note that the
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stability of matrix A rcsulting from this theorem is superfluous since we have

already assumed it to be stable.

Clearly, e; represents the gain margin of the closed-loop system. Hence,

the larger value of e implies a better stability robustness.

Remark 2: The value of e; can be estimated from (2.5) with F - 0, J - A,

G - EoC and H - B. Further, the matrix Eo can be used to maximize the estimate

(2.5). Further, Remark 1 can also be used if a maximum value of E; is needed.

It is noted that the assumption on equal number of inputs and outputs is

not a severe restriction. Indeed, if the transfer function matrix of the plant

is not square, then the condition presented in Theorem 2.2 can be termed as the

matrix [__ 01 having full rank. In this case, we may in principle employ

the technique in [47] to square down the plant by static or dynamic compensation

while keeping the full rank condition. The details are omitted here.

2.1.3. Main Result:

In this section, we consider synthesis of a type L compensator as defined

in (2.3) for L > 1. The next theorem is the main result.

Theorem 2.3: Let the feedback compensator K(s) be of the form (2.3) with

L ? i and Ki - jEj. Then, the closed-loop system can be stabilized by some K(s)

of the form (2.3), if the matrix P(O) - -CA-'B is nonsingular.

Proof: The theorem is true for L - 1 in light of Theorem 2.2. By

induction, it is assumed that the theorem is also true for L - m-l. That is, the

closed-loop system is stable for K(s) - K..1(s) which is, in fact, equivalent to

the matrix
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[A -BC (2.10)
BR-IC A.-,

having all eigenvalues in the open left half plane where (A.-,, B,-, C-) is the

realization of K,-1(s) with Ki - ejEj for i - 0, 1, .... , m-2 and K.-2 nonsingular.

We shall show that 4-- > 0 exists such that the closed-loop system is stable for

some E,._ e RP whenever e*.-1 E (0,4.1). Indeed, with K(s) defined as in (2.3),

we have

K. (s) B + C.,.. 2E..* + .. . . + e0 EOSA'_ eAi * + (s) (2.11)

s m  So

and the stability of the closed-loop system in Figure 1 is equivalent to the

stability of the closed-loop system in Figure 2 because the characteristic equa-

tion of the closed-loop system in Figure 1 can be written as

det(l + K (s)P(s)) - det(I + !-7iP(s) (I + K.,(s)P(s))')1det(I + 4..,(s)P(s) (2.12)

Since K(s) and -' have the same McMillan degree and have all the poles

at the origin, we may always find the realizations of K.(s) and s- such

that they have the same A and B matrices. Let (A.,, B,..1, C._-) be the reali-

zation of K_ 1(s) and (A,.-, B,.3 , C,) be the realization of E.-, DefineS-i

tr(,) = P(S) (I+K l. (s) P(s) )- (2.13)

then the realization of P(s) can be represented by (A, B, C,) with
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1.C A., 0 , and [] tO I (2.14)B C A, Oi [Cd

Apply the similarity transformation

to realization (3.14) and eliminate the unobservable states. We then obtain a

realization (A, B, t) of P(s) with

9 = [C = [O and C7 = [. (2.15)

It is noted that A is the same as F* I as in (2.10) which is stable by induction.

Hence, P(s) is stable. Further, it is noted that P(O) - E._E.-2 from (2.13).

By induction, E.-2 is nonsingular. This implies that there exists Ea.- e RPI ,

such that all the eigenvalues of P(O) are on open left half plane. Therefore,

if we apply Theorem 2.3 to the feedback system in Figure 2 with P(s) - P(s) and

co - e-, we can then conclude the existence of e*- > 0, such that the closed-

loop system is stable whenever e.-1 e (0,c.-'). Hence, the proof is complete.

The condition of nonsingular P(O) - -CA'1B may not be necessary for Theorem

2.3. However, if we intend to use Theorem 2.2 as a synthesis tool for the design

of K(s), then, nonsingularity of P(O) - -CA'IB is also necessary. Next, we pre-
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sent an algorithm for synthesis of K(S) as in (2.3) based on Theorems 2.2 and

2.3:

Algorithm 1:

Let P(s) - C(sI - A)-1B be defined as in (2.2) satisfying the condition

that P(O) - -CA-B is nonsingular. Define the type L compensator K(s) as in

(2.3) with Ki - ejE and L ; 1. Then, Ki can be synthesized as follows:

Step 1: Choose Eo E RPIP such that -EoCA-1B has all eigenvalues in the open

left half plane;

Step 2: Compute t0 according to (2.5) with F - 0, J - A, G - E2C and

H - B. Choose to e (0, e8) and set KO - eoEo;

Step 3: For m - 2 to L, do the following:

(1) Define realizations for K.(s) and such that they have

the same A and B matrices. Denote the realization of Km(s) as (A,, B,, C,) and

hence the realization for -- can be written as (Am, B., C,) for some C.

(ii) Choose ,i 6 RpIp such that the matrix E-_E-2 has all

eigenvalues in the open left half plane;

(iii) Compute e -l according to (2.5) with F - 0, J - A, G - E,-_I and

H - B, where (A, B, C) is defined as in (2.15). Choose .-1 E (O,4 "I) and set

It should be noted that in synthesizing the compensator K(s) with Algorithm

1, we may use Remark 2 to achieve a better bound for er's. However, it may

increase the computational burden.

12



vK K(s) P(S)

Fig. 1: Standard Single Input Single Output Control System.

Fig. 2: Integral Feedback Control System
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2.1.4. ARolication to Robust Stabilization of Parametric Uncertain Systems:

Robust stabilization of parametric uncertain systems has been studied exten-

sively in recent years [48]- [49]. A common assumption used in these references

is the minimum phase condition. Here, we intend to apply the results in Subsec-

tions 2.1.2 and 2.1.3 to a class of parametric uncertain systems without the

minimum phase condition. The uncertain system is assumed to have unstable poles

only at the origin and have equal number of inputs and outputs which can be

represented as

P(s,q)---LC(q) (sI-A(q))"IB(q), (2.16)
St.

where L a: 1, and q E Q is the uncertain parameter vector. The following

assumptions are adopted.

Assumption A.l (continuous coefficients): The elements of A(q), B(q) and

C(q) are continuous functions of q.

Assumption A.2 (compact parameter set): Q is a compact set.

Assumption A. 3 (stability): A(q) has all eigenvalues in the open left half

plane for all q e Q.

Assumption A.4 (nonsinvular D.C. gain): -C(q)A(q)'1B(q) is nonsingular for

all q E Q and there exists a matrix E e RM such that the eigenvalues of

-EC(q)A(q)-1 B(q) are all in the open left half plane for all q E Q.

Theorem 2.4: Suppose the transfer function p(s, q) as in (2.16) satisfies

Assumptions Al-A4. Then there exists a stable feedback compensator

K(s)-N(s)D(s)-1-(NL.1 + NL.2s + ... + NOsL-1)(D, + D*_1s + ... .+ Dosm- 1 ) - 1 (2.17)

with m * L such that the closed-loop is robustly stable for all q E Q.

Proof: Choose D(s) - D, + D*.1 s + ... .+ Dosm-1 such that det(D(s)) is

14



strictly Hurwitz and det(Do) o 0. Define P(s, q) :- D(s)-IC(q)(sI - A(q))-'B(q)

with realization (A(q), 9(q), t(q)). Then for the case L - 1, we may apply

Theorem 2.2 to P(s, q). Indeed, Assumption A4 implies the existence of Eo E RP' P

such that the eigenvalues of -Eot(q)A(q)- 1 B(q) are all in the open left half

plane for all q e Q. Hence, we may use (2.5) to estimate the value of e; with

F - 0, J - A(q), G - Eoe(q) and H - f(q). Since Q is compact and A(q), 9(q),

t(q) are continuous functions of q, £ > 0 exists. Hence, we may set N(s) - eoEo

where co e (0, e*). For the case L > 1, we may also follow the proof of Theorem

2.3 with P(s) replaced by P(s,q). The same argument can clearly be carried

through in the case L > 1 and hence the details are omitted.
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2.2 Simultaneous Stabilization Under Unstructured Uncertainties:

As indicated in the previous subsection, the current literature on the

robust stabilization problem can be attributed to treating two classes of per-

turbations, namely i) parametric (structured) uncertainty and ii) high fre-

quency unstructured uncertainty. In turn, the literature on the structured

uncertainty addresses the problem from two perspectives: namely, the frequency

domain (input/output, transfer function) viewpoint, and the time domain (state

space) viewpoint. In what follows, these developments are briefly reviewed.

2.2.1. Parametric (Structured) Uncertainty Problem:

One school of thought developed in the area of the robust stabilization

problem is the so-called 'simultaneous stabilization' concept. The objective

is to design a controller which guarantees stability for a set of plan. This

set of plants constitutes the uncertain system in which the parameters of the

system are unknown but bounded within given ranges. The simultaneous stabili-

zation problem was introduced by Saeks and Murray [50] and Vidyasagar and

Viswanadham [51). Essentially, the problem formulation is as follows: given a

set of k different plants (PI(s), P2(s), ... Pk(S)}, does there exist a single

compensator C(s) which stabilizes the entire set? Clearly the problem of robust

stabilization under parameter variations can be cast in the framework of

simultaneous stabilization as follows: Given

(P (s, q) : qeQI (2.18)

where Q is a compact index set and q is an uncertain parameter vector, does there

exist a single compensator C(s) to stabilize all the plants in the set (P(s, q))?

If the parameter vector q takes distinct (discrete) values, then the problem is

one of stabilizing a discrete, finite number of plants whereas if q takes on a
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continuum of values within the bounded set Q, then it is one of stabilizing an

infinite set of plants (within the bounded set Q).

In their paper, Saeks and Murray [50] develop geometric conditions for

simultaneous stabilizability but do not offer any computational criterion for

implementing the design. It is mentioned that the computational criterion is

given only for the two plant case [52]. In [51] Vidyasagar and Viswanadham

generalize the above motion for the multiple input multiple output (MIMO) case.

Their result states that the problem of simultaneously stabilizing (k + 1) plants

is equivalent to the problem of stabilizing k plants with the added requirement

that the compensator itself be stable. In the two plant case, this leads to the

requirement that the difference plant (P2(s) - P1(s)) be stabilizable via a

stable compensator. Evidently one can solve the 2 plant case completely using

these results since, in that case, the task amounts to that of finding a single

plant (namely P2(s) - PI(s)) for which one can apply the results of Youla,

Bongiorno, and Lu [53] which essentially involves the checking of the parity-

interlacing property. In [51] it is also shown that given two nxm plants, one

can generically stabilize them simultaneously provided either n or m is greater

than one. This result is further generalized in Ghosh and Byrnes [541 where it

is shown that the generic simultaneous stabilizability of r nxm plants is

guaranteed if max (n, m) ; r. Subsequently the problem of determining a

computationally feasible criterion for simultaneous stabilizability involving

more than 2 plants was addressed in a paper by Emre [55] which presents a solu-

tion for the special case with the imposition that all the k + 1 closed loop

systems possess the same characteristic equation which clearly limits the appli-

cation of the method. An important result which addresses the problem of simul-

taneous stabilization under a continuum of variations in the plant parameters is
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the one by Wei and Barmish (151. In this paper, sufficient conditions are given

under which a family of single input single output (SISO) plants can be stabil-

ized by a proper (or strictly proper, if desired) stable compensator. Regularity

conditions are imposed on the plant family coefficients, and it is assumed that

the plant family is minimum phase with one sign high frequency gain. The gen-

eralization of these results to the multiple input multiple output (MIMO) case

is given in [16]. In the present research, these concepts are used at the

problem formulation stage.

2.2.2 Unstructured Uncertainty Problem:

When the system uncertainty is mainly caused by high frequency unmodeled

dynamics, it can be characterized in the form of unstructured uncertainty. In

this framework, an uncertain system is represented by a class of plants

M[Po(s), r(s)] t ((I + L(s))Po(s): JL(jw)jj<jr(ji):V(o) (2.19)

where P0(s) is a given nominal plant, r(s) is a prespecified rational function

and L(s) is any unknown but stable rational matrix whose norm is bounded by

Ir(Jw)l and the uncertainty L(s) is a multiplicative perturbation. A similar

model can be given for an additive perturbation also. In this formulation, the

design model is characterized by a given fixed nominal plant affected by a norm

bounded perturbation.

One of the most popular design methods in the above formulation is the H*

method [241-[30]. In this method, the H" norm of the return difference matrix

of the nominal plant is minimized, thereby allowing one to find the maximum

tolerable norm bounded (unstructured) perturbation (Ir(jw)l) for guaranteed

stability. On the other hand, if the perturbation bound profile is given (i.e.

if r(s) is known), then a condition for maintaining closed-loop system stability
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is given by Doyle and Stein in [28] (see Chen and Desoer [29] and Ridgely and

Banda [33] for related work). This condition essentially led to the popular

LQG/LTR design technique [30]. In a different direction, combining Nevalinna-

Pick theory and Youla's parameterization of controllers [53], robust stability

conditions are provided by Kimura [26] for single input single output systems and

are further generalized by Vidyasagar and Kimura [32] for multiple input multiple

output systems. It is this concept that will be used in this research to address

the combined case.

2.2.3. Simultaneous Stabilization Under Unstructured Uncertainty:

Consider the simultaneous stabilization problems for the two-plant case

with each nominal plant having different unstructured uncertainties. Let S, and

S2 denote the sets of plants with the nominal systems P10 and P20, respectively.

*: { P,: IIPi(J )-Plo(ji)Ill . r,(w)lI (2.20a)

S2: { P2 : IIP2 (W)-P 2o()II0 Ir2 (i)I ) (2.20b)

where we always assume P1 and P2 have the same number or fewer unstable poles of

P10 and P20, respectively. Suppose AP:-P 20-Plo is strongly stabilizable, i.e. AP

satisfies the so-called parity interlacing property (p.i.p.). The objective is

to find a single compensator which stabilizes both S, and S2, simultaneously, and

furthermore, makes the closed-loop systems satisfy some specifications of system

performance.

At first, we consider the relatively simple case where P10 itself is

stable. From the assumption commonly made for the stabilization under the

unstructured uncertainties, S, must be stable. In this case, the formulation of

the problem can be greatly simplified. The simultaneous stabilizing compensators
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for P10 and P20 are now parameterized by a free parameter R, say

C(Pl0] - (I-RP1 0)
1'R (2.21)

provided R is a stable stabilizing compensator for the difference sys-

tem AP-P 2 0-P 0 . When the unstructured uncertainties are taken into consideration,

we at first give a result for robust stability due to Chen and Desoer [29].

Lemma I: A compensator C is a robust stabilizer of S1 for the unstructured

perturbation bound rl, if and only if:

i): C stabilizes P10 and

ii): I IC(I+PoC)-lrll I.<1

A little modification will give a condition for simultaneous stabilization

under the unstructured uncertainties.

Lemma 2: a single compensator is a simultaneously robust stabilizer for S,

and S2 if and only if C stabilizes P10 and P20 simultaneously and

I IC(I+POC)-lr, 1.<l (2.22a)

I IC(I+P20C)-lr 21 I.<l (2.22b)

Now the problem has been reduced to finding a compensator CeC[P10] such

that the norm constraints (2.22a) and (2.22b) are satisfied. Note that if C is

a simultaneously stabilizing compensator then

C-(I-RP, 0)'IR (2.23)
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Substitute (2.23) into (2.22a) and (2.22b), respectively. The robust stability

conditions are now

I I(I-RPO)-R[I+PPo(I-RPo)-'R]-rlI 1<l (2.24a)

I I (I-RPO)'lR[I+PP2o(I-RPio)-lR]-lr 2 1-<1 (2.24b)

with R being the strongly stabilizing compensator for AP. This result can be

summarized as the following theorem.

Theorem 2.4: The two sets of systems S, and S2 can be simultaneously

robustly stabilized by a compensator C if and only if

I lRr1l J.<l (2.25a)

I JR(I+APR)'lr21 1,<1 (2.25b)

where R is a strong stabilizer for AP. The simultaneously robust compensator for

S, and S2 is given by (2.23).

The proof of this theorem is available by direct manipulation of (2 .22a)

and (2.22b) combined with (2.23) and is, therefore, omitted. From Kimura [31]

we can see our problem is quite similar to the problem there4 n, say, an interpo-

lation problem with strictly bounded real (SBR) functions which interpolate the

given values at some RHP points. Define

Pr[ 0 ]
G(s): 0 R(I+APR) Ir (2.26)
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The necessary and sufficient conditions for simultaneously robust stabiliz-

ability of S1 and S2 under the unstructured uncertainties are

a) G(s) is a SBR function and

b) R is a strongly stabilizing compensator for AP.

From now on, we restrict our attention to SISO systems. Let us at first

consider the coprime factorization representation of the systems. From [561 we

write the right coprime factorization (r.c.f.) representation of the difference

system as

AP - ND-1 (2.27)

where N and D are stable right coprime functions. The strongly stabilizing com-

pensator for AP can be now characterized by the units in H4 space satisfying some

interpolation constraints. More precisely, the strong compensator has the form

R = U-D (2.28)-y-

where U is an arbitrary unit which interpolates D at the RHP zeros of N. By

applying (2.28) to G(s), the requirements for G(s) to be an SBR function are now

equivalent to

11UI rq < 1 (2.29a)

and

D V[..yK]r211.< 1(2.29b)

Denote the zeros of N in the RHP as a,, a2.... a and recall the definition

of the corresponding Blaschake product B(s)
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B(s): = a______- S) ... (_-S (2.30)
(alS) (a2+s)... (al+s)

Since B(s) is all-pass, (2.29a) and (2.29b) are now equivalent to the new

inequalities which read

l- rB (s)l 1. < 1 (2.31a)

D $ B()1.< 1 (2.31b)

By denoting

: rjB(s) (2.32a)

'2: D [ _tB (S) (2.32b)

the interpolation constraints are now reduced to finding iieSBR, i-l,2, which

interpolate zero-value at aj, i-1,2 .... . Note that the interpolation problem

here is quite simple compared with the standard Nevanlinna-Pick interpolation

problem and possesses a very simple solution (571-[58). In fact, the desired SBR

functions can be parameterized by a free parameter, an arbitrary SBR function,

as

ii - B(s)E1 , i-1,2. (2.33)

Theorem 2.5: The closed-loop systems of S, and S2 can be robustly stabi-

lized by a compensator C if and only if two arbitrary SBR functions El and E2 can

be found such that

D+ E1eU (2.34a)
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AP- .r2 -l1  (2.34b)

where U denotes the set of units in H.

Proof: Necessity: It is a straightforward manipulation.

Sufficiency: Suppose D+ENr-1-U* is a unit. From the properties of the SBR

function and the assumptions for the uncertainty size r, and r2 (without loss of

generality r, and r2 can always be assumed to be a stable and minimal phase

function [6]), it is obvious that Elrl'-(U*-D)N "' is stable. Take R*-Ejr11 as the

strongly stabilizing compensator for AP. By applying R*, (2.25a) is satisfied.

It can also be verified that (2.25b) is satisfied by substituting R* and (2.34b)

into it.

Since the solvability of the problem in theorem 2.5 is not generally avail-

able at present, we can only handle some simplified cases by making further

assumptions on the radius of the unstructured uncertainties and the difference

nominal system AP. It seems very possible to extend the results to more general

cases in future study.

Assumption A5: The radii of the unstructured uncertainties of S, and S2 are

constant and equal, i.e.

r1(s) - r2(s) - r0

Assumption A6: AP itself is minimal phase with relative degree one.

It is clear with the above assumption that any first order unit which

interpolates at infinity is qualified for the stabilization purpose. The first-

order interpolation at infinity can be simply reduced to some requirement for the

high frequency gain (HFG) of the desired unit. More specifically, the interpola-

tion constraint is satisfied if and only if the HFG of the unit is equal to the

inverse of the HFG of AP. Let the HFG of AP be 1/k. Then AP can be rewritten
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in the form

where n and d are monic polynomials and deg(d)-deg(n)+l, c is an arbitrary monic

polynomial which serves as the common determinator in forming the coprime factor-

ization representation of AP. Then the desired unit should have the form

uk (s a ) (2.36)U i- 1 - b "

where ai and bi,i-l,2 .... v. are all constants with positive real parts. The

simplest unit is zero-order which is a constant k. It is our observation that

in the cases of minimal phase AP, the order of the employed unit is not a big

issue. The following is the comparison of the cases with the unit of order zero

and the unit with order v. (2.34) is reduced to

Ikro -d],,. < 1 (2.37a)

IjkrO[-]]jj_ < 1 (2.37b)

for unit of order zero and

V V

(c 1i (s+a )-d 11 (s+bi)
Ilkro ' - 1. < 1 (2.38a)

n 12 (s+b5)
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cli (s+a 1 )-dI (s+bi) d1! (s+b !
Ilkrot ' 11< 1 (2. 38b)

n11 Isb,,1,<1 ,

for unit of order V case. By defining

V

Z: - c II (s+a)
1-1

-V

d: d I (s+b)
i-i

V

A: -n 1 (s+b)
1

we can see the formulation of the problem with (2.38) is the same as that of the

problem with (2.37). Now we concentrate our attention on (2.37). It will be

shown the problem can be reduced to a nonlinear programming problem with linear

constraints.

If c is chosen as monic (this c~n always be assumed without loss of gen-

erality), it can be easily shown from the definition of the Hi norm that

d($) (2.39

From the property of the H norm (25], we obtain a sufficient condition for

simultaneously robust stabilization for S, and S2 under Assumption A5 and

Assumption A6.

Theorem 2.6: S1 and S2 .can be simultaneously robustly stabilized by a

single compensator C under Assumption A5 and Assumption A6 if

1kro d]ll. < -2(2.40)
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We can choose the parameters of c(s), say, the zeros of c(s), such that the

H norm of d(s)c 1'(s) is equal to identity. Suppose

a

d(s) - (s+pl)(s+p 2 ). .. (s+p,) ' II (sp+)
I'

C(s) = (s+z1) (sc24... (sC,) - II (s+c1 )

with cl, i-1,2,...,m are all positive. From the multiplicative property of the

H norm, if we choose c±> Ip, 1-1,2.... m it always has

d(s)I4I~P) 11 111 (+I (S+P2) u. (S+P.) I. . (S+P1 ) I 1 (2.41)
M7s (s+c 7) s- c 2  (s+s,) i- £4~c,

Hence, a corollary of Theorem 2.6 follows from the arguments between (2.39) and

(2.41).

Corollary 2.7: S, and S2 can be simultaneously robustly stabilized by a

single compensator C under Assumption A5 and Assumption A6 if

under the constraints that

cl > 1Pil, i-1,2 .... m. (2.42b)

To verify the condition in Corollary 2.7, it is sufficient to solve a

nonlinear programming optimization problem under the constraints (2.42b) with the

objective function defined as

f(c) - Ilkro [-d). (2.43)
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2.3. Nonconservative Stability Robustness Bounds Under Structured

Uncertainty for Linear State Space Models

The problem of analyzing the stability of a family of matrices arises in

many control systems applications. When the system is described by linear state

space representation, the plant matrix elements typically depend on some uncer-

tain parameters which vary within a given bounded interval. Traditionally, in

the analysis and design of control systems, these parameters are given a specific

nominal value and the studies (such as stability, performance, etc.) are carried

out using that single value of the parameter set. Naturally, one issue of

interest in such a case would be to establish whether the system retains the

properties (such as stability) for the entire given range of parameters or not.

Since stability is usually the fundamental issue, we concentrate, in this

research, on the stability robustness aspect of the problem. Consider the linear

state space description

*(t) - A (q) x (t) qEQ (2.44)

where x(t)ER" and q is a p vector of uncertain parameters varying in the pre-

scribed compact set Q. Specifically, let the parameters qj be given a priori

bounds as

q : qj : qj (2.45)

We can write the matrix A(q) of (2.44) as

A(q) - A0 + E(q) (2.46)

where A0 is an asymptotically stable nominal matrix and E(q) is the perturbation

matrix. This nominally asymptotically stable matrix A, could represent the

closed loop (nominal) system matrix for a linear system. In that case, the

problem of obtaining bounds on qj to maintain stability is indirectly related to

the assessment of stability robustness of the control gain matrix.

The above issue of determining the stability of an interval parameter matrix
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has attracted considerable amount of research in the last few years. A very

informative account of this research is elegantly summarized in refs. [1]-[2]

(and their bibliographies).

There are essentially three paths being followed to answer the question of

interval paramete- matrix stability.

One framework is based on the polynomial theory, where the matrix stability

problem is converted to a polynomial root testing problem and the results avail-

able in the uncertain polynomial theory are used. The references [3]-(4] belong

to this category. The second viewpoint is the direct matrix theory. That is,

trying to solve the problem without converting to polynomials using such time

domain techniques as Lyapunov theory and other matrix domain results. The

references [5]-(14] fall into this category. Finally the third route follows the

frequency domain (transfer function) viewpoint wherein the concepts of multi-

variable stability margin (MSM) and structured singular value (SSV) are employed

(as measures of stability robustness). The research of references [17]-[22]

adopts this route. Most of the results to date on this problem are essentially

in the form of sufficient conditions except for these references. The results

of [3] consider special cases such as n-2 with only real spectrum. The recent

paper of (20] uses an iterative perturbation domain splitting technique to close

the gap between the necessary bound and the sufficient bound. In this research,

we present highly nonconservative bounds on the parameters to maintain stability.

For some problems, these are almost necessary and sufficient bounds.

In the next subsection, we recall a result that is fundamental to the devel-

opment of the robustness problem, and in Section III we present the main result.
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2.3.1. A Fundamental Stability Result for a Nominal Matrix

In Jury [59], the following necessary and sufficient condition is stated for

the stability of an nxn real matrix A0 in terms of the elements of the matrix A0

which was originally due to Fuller [601. We reproduce the theorem as it is

stated in Jury (59].

To [59]: Let A0 - [aij] be a real square matrix of dimension n > 1.

Let A-[A.r,] be the 'bialternate sum' of A0 itself. That is, let

- 2Ao*I n - A*l+IeA (2.47)

where e denotes bialternate product. Thus, & is a square matrix of dimension

m - hn(n-l) with rows pq (p-2,3 .... n; q-l,2...p-l), columns rs (r-2,3 .... n,

s-l,2... r-1) and elements given by

- a., if r-q

a., if r-p and s-q

L,.rs - a,+a if r-p and s-q (2.48)

aq, if r-p and s-q

-aqr if s-P

o otherwise

For the characteristic roots of A0 to have all their real parts negative (i.e.

stable matrix), it is necessary and sufficient that in (-l)n times the char-

acteristic polynomial of A0 , namely

(-lI - _jl (2.49)

and in (-1)1 times the characteristic polynomial of &I namely

(-1)" IAO-p.I (2.50)

the coefficients of A' (i-O, 1,.. .n-1) and pi - (Aj+Aj)1 (i-0, 1... m-l) should all
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be positive.

Before going into the implications of this theorem, we borrow some examples

from [59] to illustrate the form of ;, for a few matrices.

For n-2

[all a2 ]0" a2l a22

-u -(all ' a 22 ) (2.51a)

For n-3

a l l 
822 a131

A O 21 a22 a33

L831 a32 a33 J

[alla 2 2  a23 -a13

A0 a a 3 2  a 3 3 +a 1 1  a12 (2.5lb)

-a31 a21 a33+a22

For n-4

[all a12 a13 a14

A a21 a22 a23 a24 (2.51c)
a31 832 a33 a34

1a41 a42 a43 a44

a11+a22 a23 -a13 a24 -a14 0

a32 811+833 a12 a34 0 -a14

-a31 a21 a22+a33 0 a34 -a24

a42 a43 0 all+44 a12 a 1 3

-a41 0 a43 a21 a22+a44 a23

0 -a41 -a42 a31 a32 a33+a44

In [59], a method to form A0 from A0 is presented and for brevity reasons,

this method is not discussed here. It suffices to mention that it is computer

amenable and easy to build.

Evidently, the above theorem is a very powerful and useful theorem on the

31



stability of the matrix A0. The main reason that this theorem forms the backbone

of our further analysis on uncertain matrices is the property of 'convexity' in

the individual coefficients (of the characteristic polynomials of A0 & A0) to

guarantee stability of A0. By constructing the matrix i0 , which henceforth will

be called the 'tilde' matrix instead of the long name 'bialternate sum of A0 with

itself', we can do away with the interdependence of the coefficients (in the form

of Hurwitz conditions). Of course, the price we pay for this simple 'positivity

testing' condition is the construction of A0 which is of higher dimension.

Recall the well known fact that the Hurwitz region of 2x2 matrices is convex in

coefficient space. The above theorem is, in a way, a generalization of this fact

for nxn matrices. Clearly this important property of convexity in individual

coefficients proves to be extremely useful in our extension to uncertain

matrices.

It may be recalled from (2.45) that the perturbation parameter domain is a

p dimensional 'hyperrectangle' with r-2p vertices whose outer (exposed) edges are

parallel to the coordinate axes q1 . However, in sequel, it proves to be useful

to work with a symmetric range in the parameters and hence we will describe the

interval parameter matrix (2.44) in an alternate form as follows:

The interval parameter matrix

A - A0 + q

can be written as

p
K (e) - M* + E e1Aj (2.52)

i-i

where the uncertain parameters e1 have a symmetrical range of [-es, eli. [El> 0I*

about the 'center' matrix M* - M(O). Note that Ej and M* can be determined
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easily from the bounds g1 , qi and the vertex matrices Mi.

Let E1 - kij Ej. Then kij determines the shape of the hyperrectangle in the

parameter space.

We now state an obvious theorem on interval parameter matrix stability as

follows:

Thorem .9: The interval parameter matrix (2.52) is stable if and only if, in

(-l)n IM (f) - ) I.I (2.53a)

and (1)t IR(n) - I',I (2.53b)

the coefficients of A' (which we will call 0,, 1-0,1, ... n-l) and the coeffi-

cients of pl (which we call Si, i-0,1, ... m-1) are all positive.

Let 71 - (P pl) (2.54)

However, this theorem is hardly useful from a practical viewpoint. What we

need is a finitely computable test or condition to establish the stability of all

the matrices in the hyperrectangle. With this in mind, we present a sufficient

test for establishing the stability of the uncertain matrix (2.52).

Theorem_2,. 1Q: The interval parameter matrix of (2.52) is stable if

Max Ei - E < sL (2.55)

where &. is obtained as follows:

) Obtain the coefficients 71 of (2.54) in terms of the parameters e1

ii) Obtain the polynomials yi (of ei) where the coefficients of the terms

in the polynomials are all made negative (except for the constant term

which is always positive since it corresponds to the stable matrix

M*).
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iii) Obtain the single variable polynomials ji from the multivariate

polynomials 71 by substituting e1 - kij Ej

iv) Solve for the positive real roots of all these single variable

polynomials.

v) Then pn - minimum of all the positive real roots.

Proof : For the interval parameter matrix M(e) of (2.52), the coefficient ji of

the characteristic polynomials of M(e) and M(e) are polynomic in the variable ej.

For example, when there are two uncertain parameters el and e2 , a typical

expression for the coefficient -y (say 73) is of the form:

73 - b 0 3 + bl 3el + b 2 3e 2 + b3 3ezez + b 4 3e2 + b 5 3e2 + b6 3e3

+ b 3 e . + b8 3 ele2 + b93ele2

where the constant b03 is positive (corresponding to the stable matrix M*)

Now letting jell - el. and le 21 - e2r, we write

73- b 03 - Ibl 3 ez - 1b 231e 2. - b33 ele"2. - Ib43el

+ Mbs3 Ie" b le - Ib73le. - Ibe 3 le-eL

- lb93je~ 2IbmJ e e 2 ,.

Then using el, - k12 e2. where k12 > 0 is known, we get

3 - b03 -lbl 3 Ik 2e. - 1b23 le2. - lb33 lkl2 e22

I b43Ik2 ef, - lb53 e, - lb631k32 e]

- Ib73e,, - 1b8 3 1kl 2 e 3 - lb3I1k22 e3

Clearly, this is a single variable polynomial in e2.

We, then, solve for the positive real roots of 13 - 0 and denote the minimum

of these as a3- If there are no positive real roots of this equation, it means

X3 - c. Clearly j3 > 0 for all e2. < a3 and 73 > 0 for all e2. - le2i < a3 and el

- jel < k12 -M
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Clearly A, - Min ..

Note that the proposed sufficient condition is valid for any general type

of variation of the parameter vector in the matrix E(q).
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III. PERFORMANCE ROBUSTNESS IN LINEAR UNCERTAIN SYSTEMS

As mentioned earlier, much of the published literature on robustness

essentially deals with the stability robustness aspect. However, it is very well

recognized that present day control systems are required to not only stabilize

the plant but also achieve some prescribed level of performance. Thus, perform-

ance robustness is an important feature of any controller design for realistic

application problems. Studies discussing the performance robustness aspect have

been relatively scarce since it is a much more difficult problem. Here we use

the term 'performance' in a qualitative manner, which may include achieving low

regulation cost with low control effort in regulation problems or achieving

desired transient and steady-state dynamic responze with minimum percentage over-

shoot, damping ratios and steady-state errors, etc. Yet another way of measuring

performance is disturbance rejection. It is well recognized in eigenstructure

assignment theory that the majority of these performance constraints can be

"dequately modeled in terms of desired closed loop pole regions in the complex

plane. Hence, in this research, the performance robustness problem is cast as

a 'D-stability' problem where the 'D-regions' are regions in the complex plane

(which are symmetric with respect to the real axis and are simply connected) in

which the desired closed loop poles are assigned. Thus, assuming the 'nominal'

system achieves D-stability, the performance robustness problem is taken to be

the problem of achieving D-stability under perturbations. Another reason the D-

stability problem formulation is preferred is that it becomes amenable to treat

discrete system stability (where the D-region is a unit circle in the complex

plane).

In the proposed D-stability problem formulation the uncertainty under

consideration is termed 'weakly unstructured.' As mentioned earlier, 'highly
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unstructured uncertainty' is meant to be the case where only a magnitude bound

on the norm of the perturbation is assumed known. In this case, the magnitude

bounding function may not be realized by a rational transfer function. On the

other hand, in the weakly unstructured case, the bounding function can be

realized by a finite dimensional rational transfer function. The D-stability

problem under a highly unstructured uncertainty problem is not amenable for

analytical formulation. Hence, in this research, the D-stability problem is

formulated for weakly unstructured uncertainty.

3.1 D-Stability Problem Under Weakly Unstructured Uncertainty

In what follows, we make these assumptions on the D-region:

The D-region is:

i): Symmetric with respect to the real axis.

ii): Simply connected

Lemma 3.1: [SISO Systems]:

Suppose g(s) is a rational continuous transfer function. If g(s) has 7

poles outside DUaD [i.e. pieD, i-l...7. D is complementary of D] then

g(s)/(l+g(s) has p+-y poles in D if "-1" is not on the Nyquist locus along 8D, and

it encircles "-l" p times in clockwise sense.

Lemma 3.2:

The closed-loop system g(s)/(l+g(s) is D-stable if the Nyquist locus along

8D encircles "-I" -7 times in the clockwise sense.

Remark: D-stability of g(s)/(l+g(s) ia assured if and only if

l+g(s) 1,j o 0 or ll+g(s)184,6 > 0 (3.1)

Lemma 3.3: [Robust D-stability]:

Suppose: i) g(s) - go(s) + Ag(s)
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ii) gO(s)k(s)/(1+g0 (s)k(s).) is D-stable.

iii) Ag(s) is D-stable, and I jAg'R-11 1 < 1

Then the closed-loop system g(s)k(s)/(l+g(s)k(s)) is D-stable if:

Il1+(go(s) + Ag(s))k(s) ~1,S 0 0 (or. >0)

Proof: Since the Nyquist locus r[l+g0(s)k(s)] encircles the origin -y times,

and the number of D-unstable poies of go(s)k(s) and of [gO(s)+Ag(s)]k(s) are the

same (i.e. Ag(s) is D-stable), the closed-loop system g(s)k(s)/(l+g(s)k(s)) is

robust D-stable if r(l+(go(s)+Ag(s))k(s)) encircles the origin -7 times. Now,

we need to show that:

Number of encirciements of r(l-4(go+Ag)k) about "0"

-Number of encirciements of r(l+gok) about "0"*

This is true if and only if

11+(g 0 (s) + e.Ag(s))k(s)J34 80 o 0 (or positive) for all 0 :5 e5 1

Suppose ll+(g0 (s*) +. e.Ag(s*))l - 0 where s*eaD, the number of

encirciements of r(l+(go(s) + e.Ag(s)k(s)) about "0" o' --f. Since r(.)

is continuous with e, this contradicts with statement ()

Since l+(g 0+e.Ag)k is a continuous function of e, if () is not true,

there must be a ~se*sl such that, r(l+Qo+e*&g)k) passes through "0".

i.e. ll+(g0(s*)+e*Ag(s*)i - 0, s*eBD. Therefore, a contradiction.

This completes the proof.

Remark: We have the following equivalence:

jl+(gO+ecAg)k.,8D > 0

if and only if
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I (l+gok) (l+e g.k(l+gok) -']I,,D > 0

if and only if

Il+e gk(l+gok)' 1 [,1 4 e > C

if and only if

[l+Agk(l+g 0 k)' 1 [,*o > 0

Now we are in a position to state the following theorem:

Theorem* 3.1 (Robust D-stability]:

The closed-loop system g(s)k(s)/(l+g(s)k(s)), where g(s)-g 0 (s)+Ag(s), is

D-stable if:

1,g(s)k(s) (+g0(s)k(s) "1) [,e0 < 1 (3.2)

In order to use the above condition for design purposes, we take note of the

following result:

Lemma 3.4: [61]:

Every simply connected region D in the complex plane is conformally equiva-

lent to the open unit disc U.

Remark: Obviously, D is also conformally equivalent to the LHP.

Lemma 3.5:

Suppose 0 is the conformal mapping function 0-1: D- LHP. For any real

function g(s), we have:

Sup Ig(s)l - Sup Ig(@-(z))t
s-jw ZeaD

or: Sup lg(z)j - Sup lg[o(s)]l
ZD s-jw

Define HD as the following Banach space:

HD (f(s): f(s) is analytic in D and Sup- If(s) is bounded).
seD

and I1f(s)IJI D . Sup jf(s)j
SeD
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Remark: If D LHP and g(s) is D-stable then I g(s)I. : 1 g(s)1 0 . This is

called the Maximum Modulus Theorem [61].

The robust D-stability condition is given by

I Jagk(l+g0k)'ll ID < 1

or:

I I'g(O(s))k(O(s))[1+go(O(s).k(O(s))]- 1 .I- <1

Denote f(.) - k(.)[l+go(.)k(.)] "I

We reduce the condition to:

l l&g(O(s)).f(O(s))ll. < 1 (3.3)

However, in practice we only know the frequency dependent bounding function on

the uncertainty, i.e., j~g(jw)j < IR(jw)l. The question then is to be able to

get a condition for D-stability, knowing only R(Jw) (i.e., frequencies only along

the imaginary axis).

Suppose we can make an estimation

1Ago-O(jw)/'&g(Jw)1 < I8(Jw) l (3.4)

Then: the closed-loop system is D-stable if:

jf(O(Jw))oR(Jw).o(Jw)I < 1

Proof: (3.4) can be rewritten as:

,,g(O(jv) ) f(O(jv)) .Ag(jv),R1 (jr) 1 35
ig Qv) -R- I Qv) 1 35

(3.5) can be guaranteed if: (lag.R' 1 l)<l.

i.e. If(O(iw)).R(jw)O(w)I < 1 (3.6)

If Ag is strictly unstructured, the estimation of IAg(O(jw))/Ag(Jw)j may not

exist. Consider the weakly unstructured case, i.e. when Ag(s) can be written as
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a rational function with parameter variation:

Ag(s) - E(sq) qeQ

In this case, an estimation of can be obtained and finally theI A(jw) Ia eotie n ial h

robust D-stability problem can be reduced to an ordinary robust stability problem

which may be solved using the available techniques.

Consider a simple case:

D is given as shown and Ag can be written

as Ag(s) - a/s+b with: a' asa b' ;b:sbjIs-
so:

O Ag(b(Jw)) r-- b (3.7)N(w "I " Vwl.(b-w)2

Straightforward calculation gives:

1 : O(w) :5[ 3 7 1.618 (3.8)
1 8355--18

In this case 9(jw) - 1.618.

A more general case is given as follows,

TV^ which includes the slope k as a parameter.

4a

OK(w) - (3.9)

/R . -bw4
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Direct calculation gives:

fmax . u [( k/ 2 .1 -4k'--k2  ( 0

I (3k2.1)/r4kl--l-4k'-5k2-l (3 10)

The plot fmax (k)-k is given in fig 3 to show the significance of k in estimation

of 0(w). It can be seen when k > 0.2
)

fmax < 5.8.

and: k -wa, fmax - 1.

Remark: There is one important point to be mentioned here; the final estimation

of 0(w) is not related to the uncertain parameter bounds. Of course this is only

true for first order transfer functions.
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Fig. 3: Variation of k in the estimation of 0(w)
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VI. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

4.1 Work in Retrosoect:

The main theme of the described research under the present contract has

been to analyze and synthesize controllers for robust stability and performance

under the presence of structured and unstructured uncertainties. First the

aspect of robust stabilization under structured uncertainty is considered. A

class of nonminimum phase MIMO systems with structured uncertainty is considered

and a robust control design scheme is presented using the concept of integral

feedback control. Then the aspect of simultaneous stabilization (of two plants)

under unstructured uncertainty is considered, and a method for determining a sta-

bilizing controller using H. concepts is presented. These two sections cover the

task described as 'task 1' in the original proposal.

Next, the aspect of analyzing the stability robustness of linear systems

under structured uncertainty is addressed. In this research, the state space

description of the linear system subject to real parameter variations is taken

as the uncertain system. Using the theory of characteristic polynomials of some

specially constructed matrices, a method for obtaining nonconservative stability

robustness measures is presented. This section covers the task defined as 'task

2' of the original research.

Finally the aspect of performance robustness in linear uncertain systems

is addressed. The performance robustness problem is cast as a 'D-stabilization'

problem, and a method that leads to the design of controllers to keep the closed-

loop poles in a designed region under 'weakly unstructured' uncertainty is

presented. This result covers the term labeled as 'task 3' of the original

proposal.

As it normally occurs in an open research effort such as this one, the time
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schedule for carrying out these tasks did not adequately match the time schedule

originally proposed in the proposal. The research carried out under task 2 con-

sumed much more time than anticipated.

The publications listed as references [62-63-64] are the result of this

study.

Torics for Further Research

1) An interesting area of research is in the lines of the work being carried

out in [391, labeled 'mixed HZ/I' problem. This problem formulation seems

amenable to carry out robust stability and performance studies under the

combined (simultaneous presence) uncertainty case.

2) Another topic for further research would be to obtain necessary and suf-

ficient conditions for robust stability of linear interval parameter

systems.

3) One research area that needs attentior is simultaneous eigenstructure

(eigenvalues as well as eigenvectors) assignment for linear uncertain

systems.
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